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Abstract 

In this work, equations are developed for the drainage of vessels of different geometrical 
shapes through a side leak. From these equations, the maxima in the leakage times, divided by 
the time required to drain the full vessel from its bottom as a function of the side leak elevation, 
are determined. Five different geometric shapes are considered here - spheres, cylinders, cones, 
paraboloids and ellipsoids. The equations and maxima for the latter three configurations have 
not previously appeared in the literature! 

1. IntrOdllctioa 

There has been a resurgence of interest in the classical subject of tank drainage - at 
least partially from safety considerations - in recent years [I]. Most of the early 
formulas developed to compute drainage (or efflux) times from process or storage 
vessels were developed for tanks draining through a hole at the bottom [Z]. Some 
of these formulas are beginning to find their way into recent textbooks on process 
safety [3,4-J. 

Because of increasing concerns about safety and loss prevention, there has recently 
been developed the need for accurate formulas to compute ffuid discharge and vessel 
emptying rates for an opening of a given size and at an arbitrary elevation. Such 
a need arises,.for example, in analyzing an accident scenario resulting from a moving 
vehicle, e.g., a forklift truck or an autonomous guided vehicle (AC%), being driven 
into the side of a vessel. Thus, such formulas were recently presented by Crow1 [S] and 
by Hart and Sommerfeld [6) for spheres and vertical cyhndrical vessels: a numerical 
method for estimating such discharge rates and times was also developed by Crow1 for 
horizontal cylindrical vessels. Sommerfeld and Stallybrass [73 developed an analytical 
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formula, incorporating elliptic integrals for this latter geometry, and confirmed 
Growl’s numerical results. 

In his work, Crow1 ES] introduced a dimensionless drainage or effhrx time (r), 
defined as the time required to drain an initially compIetely full vessel down to 
the elevation of the opening for liquid flow divided by the time required for the 
same initially full vessel to drain completely through an opening in the bottom of 
the vessel. He then proceeded to show that a maximum in this dimensionless leakage 
time exists for certain vessel geometries as a function of the elevation (h,) of the 
drainage hole. 

This present work seeks to extend the analysis of side drainage from process vessels 
to several new geometries and to establish in which of these new geometries maximum 
drainage times can be found. Thus, equations are developed for side drainage from 
vessels of both cone and parboloid shapes, and with the vessel tip pointing up or down 
in either case, followed by a similar analysis for vertical ellipsoids. 

2. Theory 

The theory underlying the material balance and flow equations describing 
liquid efflux through a hole in a vented tank and solely under the influence of 
gravity can be found in many sources [l-6]. The primary assumptions invoked 
include turbulent flow through the hole and usage of the orifice equation 
to compensate for friction losses. Thus, liquid efflux from a vessel through an 
aperture with a cross-sectional area of A, and located at an elevation of h2 above 
the bottom of the vessel is described by the following nonlinear differential 
equation: 

where h is the variable elevation of the liquid level above the bottom of the vessel, 
A is the area of the liquid level at that elevation and, depending upon the vessel 
geometry, generally a variable function of h, A, is the area of the opening for liquid 
discharge, and C, is an orifice discharge coefficient (a typically assumed value for 
which is 0.61). 

Mathematicahy then, the problem of finding an explicit expression for the time 
(t) required for the liquid level in the vessel $0 drain from some initial elevation h, 
to some final elevation hz consists of integrating Eq. (1) between the appropriate 
limits. This is an extremely easy task in the case of process vessels for which A 
remains constant, irrespective of the liquid level - vertical circular or elliptical 
cylinders, parallelepipeds, etc. [S]. More complicated expressions for the drainage 
time result in the case of geometric shapes with variable horizontal areas, e.g., 
horizontal cylinders, paraboloids, spheres, etc. Thus, for example, in the ease of 
a vertical cone (Fig. 1) with its tip pointing down, for which the cross-sectional area of 
the liquid level at any elevation h is A = 7ch2 tan2 8, the time for complete drainage 
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Fig. 1. Sketch of a conical process vessel with the cone tip pointing down and a puncture hole in its side. 

from hI to h2 is given by 

t - - 2ntan2e [3h: + 4hlh2 + 8h$],,/%i, 

1%&/% 
(2) 

where 8 is the angle formed by the cone with its vertical axis. From Foster [2], the 
time (to) required for complete drainage of an initially ful1 conical tank (h, = H, tip 
down) from a hole located at the tank bottom (hz = 0) is 

Consequently, the dimensionless drainage time (z = t/t,-,) in this case is given by 

Z= C 3x; + 4X1X2 + 8x 
3 g JGX 

3 
(4) 

where x 1 and x2 are the dimensionless elevations of the initial liquid level (br /H) and 
of the drainage hole (h,/H), respectively. 
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3. Maximum drahge times 

Crow1 [S] first discovered that, for side drainage of initially full process vessels of 
certain geometric shapes, there can occur a maximum drainage or leakage time, which 
is a function of the elevation of the leakage hole and which can actually be greater 
than the time required to drain completely the full vessel through an identical hole at 
the bottom of the vessel. For example, he found that a maximum leakage time for 
a full spherical vessel ucxurs when the elevation of the drainage hole is equal to one 
fourth the sphere diameter; this maximum leakage time is 30% greater than that 
required for complete drainage through a hole of the same size located at the vessel 
bottom. 

Similarly, Crow1 showed via- numerical methods that a maximum drainage time 
occurs for full horizontal circular cylindrical vessels when the elevation of the drainage 
hole above the vessel bottom is equal to 0.17 of the vessel diameter. Specifically, he 
reports that the maximum drainage time for this geometry is 14.8% greater than that 
for complete drainage from the vessel bottom. With the usage of elliptic integrals, 
Sommerfeld and Stallybrass [7] confirmed Crowl’s results for horizontal circular 
cylindrical vessels. No such maximum is found in the case of drainage of vertical 
cylindrical vessels. 

4. CcbniCfl vessels 

A plot of Eq. (4) for the dimensionless drainage time z of an initially full cone 
(XI = 1) with its tip down, as a function of the dimensionless elevation of the drainage 
hole (x2), is provided in Fig. 2. This graph clearly illustrates the presence of a max- 
imum in the dimensionless drainage time; this maximum may be found analytically by 
substituting x1 = 1 into Eq. (4), differentiating with respect to x2 and then setting the 
result equal to zero. These operations yield a value of x2 = (1 + $)/4 = 0.683 for the 
location of the side drainage hole corresponding to the maximum drainage time. The 
value of this latter quantity in turn is equal to 1.776, again with x1 = 1, which means 
that a full conical vessel will continue to drain for about 78% more time from a hole 
located at this elevation in the side of the vessel, in comparison with a hole at the 
vessel bottom. 

For comparison purposes, side drainage of conical vessels with the cone tip 
pointing up, as shown in Fig. 3, was also investigated. Integration of the dynamic 
material balance equation for this particular configuration then results in the foilow- 
ing expression for the drainage time: 

27~ tan2 8 
t 

= GA,/% 

H2 _ 2H(h, + Z-z,) + 3h: + 4hihz + 8.h; 
3 15 (5) 

where H is the total height of the conical vessel. Similarly, the time &) r&uired for the 
special case of complete drainage of a full invetied cone (cone tip up, hl = H, 
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Fig. 2. Dimensionless side drainage times for initially full 
pointing down or up. 

31 

and vented conical vessels with the wne tip 

Fig. 3. Sketch of a conical process vessel with the cOne tip pointing up and a puncture hole in its side. 
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hz = 0) vented to the atmosphere is given by 

t(j = 
167c tan28 Hs,z 

15C,A,,/& * 
(6) 

To our knowledge, the above results for an inverted cone have never appeared 
in the technical literature. Interestingly enough, Eq. (6) states that the time required 
to drain completely a full inverted conical tank through a bottom hole is 5 times 
the time required for complete drainage of the same full conical tank [but with the 
tip down, compare with Eq. (3)], all other parameters (CO, A,, H, 0) remaining 
the same. 

Dividing Eq. (5) by Eq. (6) yields the following expression for the dimensionless 
drainage time for a conical tank with its tip up: 

(7) 

where the dimensionless heights x1 and x2 have the same significance as in the 
preceding case. This equation for the case of an initially full vessel (x1 = I) being 
drained down to the elevation of the side drainage hole is also depicted in Fig. 2, again 
with the dimensionless drainage time plotted versus the dimensionless elevation of the 
puncture hole. There is no maximum time exhibited in this curve for a conical vessel 
with its tip pointing up. Indeed, differentiation of Eq. (7) with respect to x2 does not 
yield any intermediate stationary point, confirming the absence of a maximum in this 
particular vessel configuration. 

5. Paraboloids 

The specific vessel configuration considered here is a vertical paraboloid with 
a circular cross section in the horizontal plane. Thus, the area (A) of this cross section 
at any elevation h of the liquid level for a paraboloid with its tip pointing down (see 
Fig. 4) is equal to TCCI’ h/c, where u is the radius of the paraboloid at its top and c is its 
total height. Insertion of this expression for the variable cross-sectional area into 
Eq. (1) followed by integration then yields the following result for the drainage time 
between h1 and hl: 

2na2 
t 

= 3C,A,c,& 
(h, + 2hz)JR. 03) 

The complete efflux time requirement for an initially full paraboloid of circular cross 
section and draining through a hole in the bottom tip of the vessel has previously [S] 
been shown to be 

2na2 
to = 

3C,A,&g ‘- J (9) 
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Fig. 4. Sketch of a paraboloid process vessel with its tip pointing down and a puncture hole in its side. 

And thus the dimensionless drainage time for this particular vessel configuration, as 
given by dividing Eq. (8) by Eq. (91, is expressed by 

z = (x1 + 2&,/X1 i Xi, (W 

where x1 = h,/c and x2 = hJc. Differentiation of Eq. (10) with respect to x2 (after 
setting xi = 1) in this case leads to the occurrence of a stationary point at ~2 = 0.5. 
The value of the-function (maximum dimensionless drainage time) at this stationary 
point is then computed from Eq. (10) as equal to fi = 1.414. 

Determination of the leakage time through a side hole in the case of a circular 
paraboloid with its tip pointing up, as depicted in Fig. 5, merely requires changing the 
expression for the area of the ‘horizontal circular cross section to A = d(c - h)/c, 
before substitution into Eq. (1) and integration_ The resulting expression for the 
leakage time in this case is 

27cC12 
t= (11) 
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Vent 

Fig. 5. Sketch of a paraboloid process vessel with its tip pointing up and a puncture hole in its side. 

Similarly, the time requirement for complete drainage of such a paraboloid, initially 
full and through a leakage hole at the bottom, is given by setting hI = c and hz = 0 in 
Eq. (11): 

4xa2 
t* = J 

3C,A,& ” 

In this case, comparison of Eq. (12) with Eq. (9) f or complete drainage of a vertical 
circular paraboloid with its tip down leads to the interesting conclusi& that the time 
for complete drainage of such a paraboloid with its tip up is exactly twice that 
required for one with its tip down. Lastly, the dimensionless drainage time z iti this 
case of a vertical circular paraboloid with its tip up, as given by dividing Eq. (11) by 
Eq. (12), is as follows: 

7 = 3 [3 - (XI + 2X&/~ (13) 

again with x1 = hi/c and x2 = h,/c. Here, as also in the case of a conical vessel 
with its tip up, differentiation of z from Eq. (13) with respect to x2 after 
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Fig. 6. Dimensionless side drainage times for initially full and vented paraboloids with the tip pointing 
down (0) or up (+), and for circular ellipsoids (I) (vertical or horizontal). 

substitution of x1 = 1 does not lead to any intermediate stationary point. Thus, 
there exists no maximum leakage time either for a circular paraboloid with its tip 
up. The behavior of the dimensionless leakage times for vertical circular paraboloids 
with tips down and up, as given by Eqs. (10) and (13), respectively, is illustrated 
in Fig. 6. 

6. Ellipsoids 

We consider first a vertical ellipsoidal vessel with a circular cross section in 
the horizontal plane; such a configuration is shown in Fig. 7. Specifically, let 
the maximum radius of this cross section be equal to R and the overall height of this 
vessel H. The circular cross-sectional area at any elevation h of the liquid level is then 
given by 

A= $ (hH - h2). (14) 

The drainage time for this vessel configuration, resulting from integration of 
Eq. (1) after insertion of Eq. (14) therein, is determined by the following ex- 
pression: 

81tRZ 
t= 3C,A,H= fig H(h1 + 2h2) 

3h: + 4hlh2 + 8h; 
- 5 1 J&-z&. (15) 
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Fig. 7. Sketch of a vertical ellipsoidal process vessel with a circular cross section in the horizontal plane and 
a puncture hole in its side. 

The complete efflux time for such an ellipsoidal vessel, initially full (h, = H) and 
draining through a hole at the bottom (hz = 0), is expressed as follows: 

Equation (16) reduces to Foster’s earlier expression [Z] for complete drainage of 
a sphere when H = 2R. Dividing Eq. (15) by Eq. (16) then yields the dimensionless 
time z for side drainage of a vertical ellipsoidal vessel with a circular horizontal cross 
section: 

7 = 3 [(5X, + 10x2) - (3x; + 4x1x2 + 8x;)]& - x2. (17) 

In this case, through usage of the calculus, a maximum in z is found at x2 = 0.25 
when x1 = 1; that is, the full vessel will continue to drain for the longest time 
when the leak occurs quarter of the way up the vessel height, which is exactly the 
same result originally obtained by Crow1 [S] for a sphere. Specifically, this 
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I-L1 

Fig. 8. Sketch of a horizontal ellipsoidal process vessel with a circular cross section in the vertical plane and 
a puncture hole in its side. 

maximum value of the dimensionless drainage time z for a full vertical ellipsoidal 
vessel is equal to 3fi/4 = 1.299 - again, the same value as for a sphere. 

Lastly, we consider a horizontal ellipsoidal vessel with a circular cross section 
in the vertical plane (see Fig. 8). In this case, we let the maximum radius of this 
cross section again be denoted by R and the overall length of this vessel in 
the horizontal plane by L. The elliptical cross-sectional area formed by the 
horizontal liquid surface at any liquid level h above the bottom of the vessel in this 
case is [9] 

A=$[2hR-h2] (13) 

and the drainage time is in turn given as 

YtL 
t= 2R(hl + 2hz) 

3h: + 4hlhz + 8h; 
- 3GAoR,bi 5 1 JK=i, (19) 

which is identical in form to Eq. (15) for a vertical circular ellipsoid. Similarly, when 
hi = 2R and h2 = 0, Eq. (19) reduces to the following expression: 

SnLR 
to = 

15GAo,/% 
d- 2R. (20) 
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In this case of a horizontal circular ellipsoid, the expression for the dimensionless 
drainage time z [after dividing Eq. (19) by Eq. (20) J yields a result identical 
to Eq. (17) for a vertical circular ellipsoid, but with x1 = h1/2R and x2 = hJ2R in the 
horizontal case. Thus, the resulting values of the maximum dimensionless leakage 
time and the corresponding dimensionless elevation of the leak will be the same in 
both of the ellipsoidal cases, namely, z = 1.299 and x2 = 0.25, respectively. It will be 
recalled that these are the same values as originally reported by Crow1 [S] for 
a sphere. A plot of the behavior of this dimensionless leakage time for ellipsoids is also 
included in Fig. 6. 

7. Disxussion 

Some discussion of the reasons for the appearance of maximum leakage times in 
certain geometric vessel configurations, but not in others, may be in order 
here. By way of convenience, maximum dimensionless leakage times and the 
corresponding dimensionless elevations of the leaks .for all of the known vessel 
configurations examined to date are summarized .in Table 1. As Crow1 [S] 
first observed, there is no maximum leakage time in the case of a vertical circular 
cylindrical vessel - a vessel with a constant cross-sectional area formed by the 
liquid level therein. Thus, one would not anticipate the existence of maximum 
leakage times in the cases of vertical elliptical cylinders or parallelepipeds 
either - vessel shapes of constant cross-sectional area for which drainage 
time equations have also been developed earlier [S]. Also, as shown in this 
present work, no intermediate stationary points (maxima) are observed for vessel 
configurations wherein the liquid cross-sectional area is increasing with decreasing 
elevation of the liquid level, namely, conical vessels and paraboloids with their 
tips pointing up. 

Table 1 
Maximum dimensionless drainage times and corresponding dimensionless locations of the drainage hole in 
the vessel side for various geometrical vessel configurations 

Vessel 
configuration 

Sphere 
Vertical cylinder 
Horizontal cylinder 
Cone with tip down 
Cone with tip up 
Paraboloid with tip down 
Paraboloid with tip up 
Vertical ellipsoid 
Horizontal ellipsoid 

Maximum 
drainage 
time t LA 

1.299 
None 
1.161 
1.776 
None 
1.414 
None 
1.299 
1.299 

Elevation 
of drainage 
hole (x2) 

0.25 
- 

0.17 
0.683 
- 

0.50 
- 

0.25 
0.25 

Reference(s) 

CSI 
fS1 
D71 
This work 
This work 
This work 
This work 
This work 
This work 
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Hence, as Table 1 indicates, it is only in vessels wherein the cross-sectional area 
decreases with decreasing elevation of the liquid Ievel that maxima in the dimension- 
less leakage time are found. In such geometric configurations - spheres, ellipsoids, 
horizontal cylinders, and cones and paraboloids with their tips pointing down - the 
volume of fluid remaining to be drained is decreasing as the liquid level falls. Thus, as 
the driving force (hydrostatic head) for drainage is dropping, the amount of fluid 
remaining to be drained under this reduced head is also decreasing. These two effects 
tend to counteract each other and result in an intermediate maximum drainage 
time. Again as indicated in Table 1, this maximum drainage time, as normalized to the 
time required to drain the full vessel from its bottom, never achieves the value of two, 
while the corresponding dimensionless elevation of the drainage hole varies from 
a value of 0.17 for a horizontal cylinder [5,7] up to 0.683 for a conical vessel with 
its tip pointing down. It was noted earlier that the values - both drainage times 
and hole elevations - are the same for spheres and ellipsoids, and thus the former 
may be considered as merely a special case of the latter. Lastly, one would also 
expect to find maximum leakage times exhibited at intermediate elevations of the 
drainage hole by any other process vessels whose geometric configuration is such that 
the cross-sectional area formed by the liquid level decreases as the elevation of the 
leakage hole falls. 

Nomenclature 

a 
A 

4 
b 

c 

c 

CO 
d 

D 

9 
h 

hl 

hz 
H 
L 

4 
f 
R 
t 
to 

V 

length of major axis of an ellipse, m 
cross-sectional area of the liquid surface in the vessel at any time, m2 
cross-sectional area of the opening for liquid flow out of the vessel, m2 
length of minor axis of an ellipse, m 
height of a paraboloid, m 
length of chord formed by liquid level in a vessel, m 
orifice discharge coefficient 
diameter of the opening for liquid flow out of the vessel, m 
diameter of a vessel, m 
acceleration due to gravity, m/s2 
elevation of liquid level in vessel at any time, m 
initial elevation (t = 0) of liquid level in the vessel, m 
elevation of opening above the bottom of the vessel, m 
overall height of a vessel, m 
length of a horizontal vessel, m 
liquid volumetric flow rate out of the vessel, m3/s 
variable radius of circular cross section formed by the liquid level, m 
radius of a vessel (= D/2), m 
time, s 
time for complete drainage of a full vesse1 through a hole located at the 
bottom, s 
liquid velocity, m/s 



40 KS. Lee, J.T. SommerfeldjJaurnaI of Hazardous Materials 38 (1994) 27-40 

V liquid .volume in the vessel at any time, m3 
x dimensionless elevation of liquid level (= h/D) 
xi dimensionless elevation of initial liquid level (= hi/D) 
x2 dimensionless elevation of opening in vessel (= kz/D or h2/H) 

Greek letters 

I9 angle formed by a cone with the vertical axis 
n: number pi (3.14159. . .) 

P liquid density, kg/m3 
z dimensionless drainage time (= t/to) 
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